Part Number Hot Search : 
DAN217U 2SC3746 KE180 CPOCZFL MMDF2P0 89C51 DFA064 PDTC114
Product Description
Full Text Search
 

To Download HUF76423S3S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUF76423P3, HUF76423S3S
Data Sheet October 1999 File Number 4708.2
33A, 60V, 0.035 Ohm, N-Channel, Logic Level UltraFET Power MOSFET Packaging
JEDEC TO-220AB
SOURCE DRAIN GATE
Features
JEDEC TO-263AB
DRAIN (FLANGE)
* Ultra Low On-Resistance - rDS(ON) = 0.030, VGS = 10V - rDS(ON) = 0.035, VGS = 5V * Simulation Models - Temperature Compensated PSPICE(R) and SABER(c) Electrical Models - Spice and SABER(c) Thermal Impedance Models - www.Intersil.com * Peak Current vs Pulse Width Curve * UIS Rating Curve
GATE SOURCE DRAIN (FLANGE)
HUF76423P3
HUF76423S3S
Symbol
D
* Switching Time vs RGS Curves
Ordering Information
PART NUMBER PACKAGE TO-220AB TO-263AB BRAND 76423P 76423S HUF76423P3 HUF76423S3S
G
S
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76423S3ST.
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified HUF76423P3, HUF76423S3S UNITS V V V A A A A
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC= 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES:
60 60 16 33 35 23 22 Figure 4 Figures 6, 17, 18 85 0.567 -55 to 175 300 260
W W/oC
oC oC oC
1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
1
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFETTM is a trademark of Intersil Corporation. PSPICE(R) is a registered trademark of MicroSim Corporation. SABER(c) is a Copyright of Analogy Inc. 1-888-INTERSIL or 407-727-9207 | Copyright (c) Intersil Corporation 1999.
HUF76423P3, HUF76423S3S
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage BVDSS IDSS IGSS VGS(TH) rDS(ON) ID = 250A, VGS = 0V (Figure 12) ID = 250A, VGS = 0V , TC = -40oC (Figure 12) Zero Gate Voltage Drain Current VDS = 55V, VGS = 0V VDS = 50V, VGS = 0V, TC = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250A (Figure 11) ID = 35A, VGS = 10V (Figures 9, 10) ID = 23A, VGS = 5V (Figure 9) ID = 22A, VGS = 4.5V (Figure 9) THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient RJC RJA TO-220 and TO-263 1.76 62
oC/W oC/W
TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
60 55 -
-
1 250 100 3 0.030 0.035 0.038
V V A A nA
VGS = 16V
1 -
0.025 0.029 0.032
V
SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) tr td(OFF) tf tOFF tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(5) Qg(TH) Qgs Qgd CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 30V, ID = 23A, Ig(REF) = 1.0mA (Figures 14, 19, 20) VDD = 30V, ID = 35A VGS = 10V, RGS = 10 (Figures 16, 21, 22) VDD = 30V, ID = 22A VGS = 4.5V, RGS = 10 (Figures 15, 21, 22) 12 147 32 50 245 125 ns ns ns ns ns ns
SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance 1060 315 65 pF pF pF 28 15 1.2 3.5 7 34 18 1.5 nC nC nC nC nC 7 85 47 76 140 185 ns ns ns ns ns ns
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage SYMBOL VSD trr QRR ISD = 23A ISD = 11.5A Reverse Recovery Time Reverse Recovered Charge ISD = 23A, dISD/dt = 100A/s ISD = 23A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.0 80 205 UNITS V V ns nC
2
HUF76423P3, HUF76423S3S Typical Performance Curves
1.2
POWER DISSIPATION MULTIPLIER
40
1.0
ID, DRAIN CURRENT (A) 30 VGS = 10V 20 VGS = 4.5V
0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC)
10
0
25
50
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2
ZJC, NORMALIZED THERMAL IMPEDANCE
DUTY CYCLE - DESCENDING ORDER 0.5 1 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 10-1 100 101
SINGLE PULSE 0.01 10-5 10-4
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 10V I = I25 175 - TC 150
IDM, PEAK CURRENT (A)
100 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 20 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
FIGURE 4. PEAK CURRENT CAPABILITY
3
HUF76423P3, HUF76423S3S Typical Performance Curves
300
(Continued)
300 IAS, AVALANCHE CURRENT (A) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100
ID, DRAIN CURRENT (A)
100 100s
STARTING TJ = 25oC 10 STARTING TJ = 150oC
10
OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) SINGLE PULSE TJ = MAX RATED TC = 25oC
1ms 10ms
1 0.01
0.1
1
10
100
1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
60
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V ID, DRAIN CURRENT (A)
60
VGS = 10V VGS = 5V
ID, DRAIN CURRENT (A)
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC VGS = 4V
45
45
30 TJ = 175oC 15 TJ = 25oC 0 2.0 TJ = -55oC 3.0 3.5 4.0 4.5 5.0
30 VGS = 3.5V 15 VGS = 3V
2.5
0
0
1
2
3
4
VGS, GATE TO SOURCE VOLTAGE (V)
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
50
NORMALIZED DRAIN TO SOURCE ON RESISTANCE
2.5
ID = 35A
rDS(ON), DRAIN TO SOURCE ON RESISTANCE (m)
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 35A
2.0
40 ID = 25A ID = 15A 30
1.5
1.0
20 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V)
0.5 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
4
HUF76423P3, HUF76423S3S Typical Performance Curves
1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250A NORMALIZED GATE THRESHOLD VOLTAGE
(Continued)
1.2 ID = 250A
1.0
1.1
0.8
1.0
0.6
0.4 -80
-40
0
40
80
120
160
200
0.9 -80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
VGS , GATE TO SOURCE VOLTAGE (V) 10 VDD = 30V 8
3000 CISS = CGS + CGD C, CAPACITANCE (pF) 1000
6
COSS CDS + CGD 100
4
CRSS = CGD VGS = 0V, f = 1MHz
2
WAVEFORMS IN DESCENDING ORDER: ID = 35A ID = 25A ID = 15A 0 5 10 15 20 25 30
0 1 10 60 Qg, GATE CHARGE (nC)
20 0.1 VDS , DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
250 VGS = 4.5V, VDD = 30V, ID = 22A SWITCHING TIME (ns) 200 tr SWITCHING TIME (ns)
200 VGS = 10V, VDD = 30V, ID = 35A 150
td(OFF) tf tr
150 tf 100 td(OFF) 50 td(ON) 0 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE ()
100
50 td(ON) 0 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE ()
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
5
HUF76423P3, HUF76423S3S Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
VDS RL VDD VDS VGS = 10V VGS
+
Qg(TOT)
Qg(5) VDD VGS VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 5V
DUT Ig(REF)
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
VDD DUT 0
10% 90%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH 50%
FIGURE 21. SWITCHING TIME TEST CIRCUIT
FIGURE 22. SWITCHING TIME WAVEFORM
6
HUF76423P3, HUF76423S3S PSPICE Electrical Model
.SUBCKT HUF76423 2 1 3 ;
CA 12 8 1.46e-9 CB 15 14 1.46e-9 CIN 6 8 1.0e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
10
rev 7 September 1999
LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
ESG 6 8 + LGATE GATE 1 RLGATE CIN EVTEMP RGATE + 18 22 9 20 EVTHRES + 19 8 6
IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 5.5e-9 LSOURCE 3 7 4.4e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 7.0e-3 RGATE 9 20 3.6 RLDRAIN 2 5 10 RLGATE 1 9 55 RLSOURCE 3 7 44 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 1.45e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3
S1A 12 S1B CA 13 + EGS 6 8 13 8
S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*100),3.5))} .MODEL DBODYMOD D (IS = 6.3e-13 RS = 6.8e-3 TRS1 = 1e-3 TRS2 = 1e-6 XTI = 4.3 CJO = 1.28e-9 TT = 5.1e-8 M = 0.5) .MODEL DBREAKMOD D (RS = 2.9e-1 TRS1 = 1e-4 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 9.5e-10 IS = 1e-30 N = 10 M = 0.82) .MODEL MMEDMOD NMOS (VTO = 2.10 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6) .MODEL MSTROMOD NMOS (VTO = 2.45 KP = 60.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.79 KP = 0.13 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 36 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.2e-3 TC2 = -5e-7) .MODEL RDRAINMOD RES (TC1 = 1.3e-2 TC2 = 3.1e-5) .MODEL RSLCMOD RES (TC1 = 5.5e-3 TC2 = 7e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.8e-3 TC2 = -5.8e-6) .MODEL RVTEMPMOD RES (TC1 = -1.7e-3 TC2 = 8e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.8 VOFF= -2.8) VON = -2.8 VOFF= -4.8) VON = -0.6 VOFF= 0.5) VON = 0.5 VOFF= -0.6)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
+
-
EBREAK 11 7 17 18 66.0 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
RDRAIN 21 16
DBODY
MWEAK MMED
RBREAK 18 RVTEMP 19
VBAT +
8 22 RVTHRES
HUF76423P3, HUF76423S3S SABER Electrical Model
REV 7 September 1999 template huf76423 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 6.3e-13, xti = 4.3, cjo = 1.28e-9, tt = 5.1e-8, m = 0.50) d..model dbreakmod = () d..model dplcapmod = (cjo = 9.5e-10, is = 1e-30, n = 10, m = 0.82 ) m..model mmedmod = (type=_n, vto = 2.10, kp = 6, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.45, kp = 60.5, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.79, kp = 0.13, is = 1e-30, tox = 1) DPLCAP sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.8, voff = -2.8) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.8, voff = -4.8) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.6, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.6) c.ca n12 n8 = 1.46e-9 c.cb n15 n14 = 1.46e-9 c.cin n6 n8 = 1.0e-9 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1.0e-9 l.lgate n1 n9 = 5.5e-9 l.lsource n3 n7 = 4.4e-9
GATE 1 RLGATE CIN LGATE RSLC2 ISCL
LDRAIN 5 RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED MSTRO 8 EBREAK + 17 18 71 RDBODY DRAIN 2 RSLC1 51
ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8
50 RDRAIN 21 16
DBODY
-
LSOURCE 7 RLSOURCE
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
S1A S2A 14 13 S2B 13 + EGS 6 8 EDS CB + 5 8 14 15
SOURCE 3
RSOURCE 12 RBREAK 17 18 RVTEMP 19 IT
res.rbreak n17 n18 = 1, tc1 = 1.2e-3, tc2 = -5.0e-7 res.rdbody n71 n5 = 6.8e-3, tc1 = 1e-3, tc2 = 1e-6 res.rdbreak n72 n5 = 2.9e-1, tc1 = 1e-4, tc2 = 0 res.rdrain n50 n16 = 7.0e-3, tc1 = 1.3e-2, tc2 = 3.1e-5 res.rgate n9 n20 = 3.6 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 55 res.rlsource n3 n7 = 44 res.rslc1 n5 n51 = 1e-6, tc1 = 5.5e-3, tc2 = 7.0e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.45e-2, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.7e-3, tc2 = 8.0e-7 res.rvthres n22 n8 = 1, tc1 = -1.8e-3, tc2 = -5.8e-6 spe.ebreak n11 n7 n17 n18 = 66.0 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1
13 8 S1B
CA
VBAT +
-
-
8 RVTHRES
22
equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/100))** 3.5)) } }
8
HUF76423P3, HUF76423S3S SPICE Thermal Model
REV 1 September 1999 HUF76423T CTHERM1 th 6 1.40e-3 CTHERM2 6 5 8.30e-3 CTHERM3 5 4 7.00e-3 CTHERM4 4 3 3.20e-3 CTHERM5 3 2 1.50e-2 CTHERM6 2 tl 1.10 RTHERM1 th 6 1.20e-2 RTHERM2 6 5 2.99e-2 RTHERM3 5 4 8.43e-2 RTHERM4 4 3 4.73e-1 RTHERM5 3 2 7.14e-1 RTHERM6 2 tl 9.47e-2
RTHERM1 CTHERM1 th JUNCTION
6
RTHERM2
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUF76423T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 1.40e-3 ctherm.ctherm2 6 5 = 8.30e-3 ctherm.ctherm3 5 4 = 7.00e-3 ctherm.ctherm4 4 3 = 3.20e-3 ctherm.ctherm5 3 2 = 1.50e-2 ctherm.ctherm6 2 tl = 1.10 rtherm.rtherm1 th 6 = 1.20e-2 rtherm.rtherm2 6 5 = 2.99e-2 rtherm.rtherm3 5 4 = 8.43e-2 rtherm.rtherm4 4 3 = 4.73e-1 rtherm.rtherm5 3 2 = 7.14e-1 rtherm.rtherm6 2 tl = 9.47e-2 }
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
9


▲Up To Search▲   

 
Price & Availability of HUF76423S3S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X